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1 INTRODUCTION

The basics are covered and we are all ready to not only travel to the far
stars but dig up their surface to study the real magic. Here, you should
stop and contemplate the immense contribution by scientists to understand
the processes in the most indirect ways possible. We will deal with stellar
structures and processes happening throughout the lifetime of a star and why
on the first place it happens.

2 TOPICS TO STUDY

1. Hydrostatic equilibrium, Timescales: dynamical, thermal, nuclear

2. Energy generation, thermonuclear reactions

3. Energy transport; opacity, radiative and convective transport

4. Equations of stellar structure

5. Virial Theorem, Pressure

6. Stellar properties as a function of mass, homology

6. Degeneracy: Chandrasekhar limit

3 Hydrostatic Equilibrium

We are discussing the hydrostatic equilibrium first. Stars are composed of
plasma which being a fourth state is considered as a fluid. This whole struc-
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ture is held together by gravity which is not opposed by one but three different
types of pressure.
Three types of stellar pressure are :

1. Ideal Pressure - Collision b/w gas particles (Pideal ∝ ρT )

2. Radiation Pressure - Collision b/w photons and matter (Prad ∝ ρT 4)

3. Degeneracy Pressure - Result of resistance of electrons or neutrons against
being compressed to a smaller volume

(Pdeg ∝ ρ5/3 when non-relativistic)
(Pdeg ∝ ρ4/3 when relativistic)

A star’s interior stability is promised by the balancing pressure and grav-
ity. The star is stabilized(i.e.,nuclear reactions are kept under control) by a
pressure-temperature thermostat or is self - regulating.

We shall discuss first about a thin shell of material in the sphere. Let the
shell be at a distance r in a sphere of M and R having thickness dr. Mass
of the shell dM = 4πr3ρdr. The shell is subject to gravitational force and
pressure both acting inwards.

Fg = −GMρ

r2
dr Fp = − dP

dr
dr (1)

We already know Fp = P (r) − P (r + dr) as pressure at r is more than at
r+dr. Using F = ma we can calculate acceleration of the shell.

(ρdr)r̈ = −[
GMρ

r2
+
dP

dr
]dr

Therefore, acceleration is

r̈ = −[
GM

r2
+
dP

ρdr
]

This is the equation of motion of the shell. But when calculating equation
for hydrostatic equilibrium of the star we nullify the acceleration part and
equate the pressure applied and the gravitational force.

dP.A = −GM(r)m/r2 = −GM(r)× (ρAdr)/r2
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dP/dr = −GM(r)ρ(r)/r2

dP

dr
= −GMρ

r2
(2)

Changing in terms of dm we will have Lagrangian form of the equation

dP/dm = (dP/dr)(dr/dm) = (dP/dr)(dm/dr)−1

−(GMρ)/(r2)× (1/4πr2ρ) = −(GM)/(4πr4)

The initial one was Euler form. Now, a simple trick and we get to know
the central temperature of a star.
For starters, we assume the density to be uniform

ρ = constant
dP/dr = −GM(r)ρ/r2

M(r) = 4πr3ρ/3
dP/dr = −G(4πr3ρ2)/3r2

∫ 0

Pc

dP =

∫ R

0

−4πGρ2

3
rdr

Pc =
4πGρ2

6
R2 =

Gρ

2R
× 4πρR3

3

Therefore,

Pc =
GMρ

2R

As Pc = Pideal

Pc = 1.69ρNakTc =
GMρ

2R

Tc =
GM

3.38NakR

Lagrangian form is better in case of stars, the mass parameter is the inde-
pendent coordinate and others are a function of it. We label each mass shell
by the mass m interior to it. Thus for a star of total mass M, the shell m =
0 is the one at the center of the star, the one m = M/2 is at the point that
contains half the mass of the star, and the shell m = M is the outermost one.
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4 The Virial Theorem and it’s Implications

Hydrostatic equilibrium helps in linking gravitational potential energy and
internal energy. The virial theorem provides an equation that clarifies the
relationship between average over time of the total kinetic energy of distinct
particles to that of the total potential of the system. We can also look in the
alternative ways. Multiply the equation of hydrostatic equilibrium on both
sides by V. ∫ P

0

V dP = −
∫ P

0

GMV

4πr4
dm = −

∫ P

0

GM

3r
dm (3)

Here the gravitational potential will indicate the energy required to assemble
the matter from infinity into a star.

Ω = −
∫ M

0

GMdm

r
(4)

∫ P (R)

0

V dP = [PV ]R0 −
∫ V (R)

0

PdV (5)

as at boundary condition P = 0 and at centre V = 0 therefore the first term
at right hand vanishes giving

Ω = −3

∫ V (R)

0

PdV = −3

∫ V (R)

0

Pdm

ρ
(6)

This is the general form used. Using P = ρkBT/µmH = RρT/µ which is
applicable for ideal gas and substituting in the derived equation of virial
theorem(22) we will get ∫ M

0

RTdm

µ
= −Ω

3
(7)

For a monatomic ideal gas, the internal energy per particle is (3/2)kbT , so
the internal energy per unit mass is u = (3/2)RT/µ. We will get∫ M

0

2udm

3
= −Ω

3
U = −Ω

2
(8)

Therefore the total energy E = U + Ω. Note that, since Ω < 0, this implies
that the total energy of a star made of ideal gas is negative, which makes
sense given that a star is a gravitationally bound object. As we have only
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talked about whole radius condition we should also take one example where
Rs < R. We will get

PsVs −
∫ Vs

0

P

ρ
dm =

Ωs

3
(9)

As can be concluded Ps and Vs are for pressure(exerted by enveloping sphere)
and volume of shell s.

We know that U = 3MRT/2µ and Ω = −αGM2/R which help us to know
the average temperature of the star(solve the eqn).

T =
αµGM

3R2
(10)

The result E = U + Ω bears a significant resemblance to one that applies
to orbits. In an orbit K = mv2/2 = GmM/2R and potential yielding to
−GmM/R which is the same. Therefore it hints at an alternative proof for
a system of particles.

K =

∑N
i mi(ẋi

2 + ẏi
2 + żi

2)

2
W = −(G/2)

∑
i,j

mimj

|~ri − ~rj|
(11)

I =
N∑
i

mimi(xi
2 + yi

2 + zi
2)

dI

dt
= 2

N∑
i

mi[xiẍi + yiÿi + ziz̈i] (12)

d2I

dt2
= 2

N∑
i

mi(ẋi
2 + ẏi

2 + żi
2 + xiẍi + yiÿi + ziz̈i) (13)

Accordingly, we will use acceleration for solving further.

−̈→ri = −G
∑
j

mj(
−→ri −−→rj )

|−→ri −−→rj |
3 (14)

Now , let us substitute this value in the following eqn :-∑
mi(xiẍi + yiÿi + ziz̈i) = −G

∑
i,j

mimj

|−→r ij|
3 [xi(xi − xj) + yi(yi − yj) + zi(zi − zj)]

(15)
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= −G
∑
i,j

mimj

|−→r ij|
3 [x2i + y2i + z2i − xixj − yiyj − zizj] (16)

= −G
∑
i,j

mimj

|−→r ij|
3 [x2j + y2j + z2j − xixj − yiyj − zizj] (17)

= −G
2

∑
i,j

mimj

|−→r ij|
3 [(xi − xj)2 + (yi − yj)2 + (zi − zj)2] (18)

Taking equation(17) (18), dividing by 2 and subtracting from the other we
get perfect squares of ri and rj.

S = −G
2

∑
i,j

mimj

|−→r ij|
3 (rij)

2 = W
d2I

dt2
= 2K +W (19)

5 Energy generation and reactions

Hydrostatic balance is essentially a statement of conservation of momentum.
We should discuss the first law of thermodynamics for proving the energy
conservation which is universally true.

5.1 First law of Thermodynamics

U = Q + PV . We will consider aggain a thin spherical shell of mass dm.
This mass element has an internal energy per unit mass u, so the total en-
ergy of the shell is udm. The internal energy can consist of thermal energy
(i.e. heat) and chemical energy (i.e. the energy associated with changes
in the chemical state of the gas). ∂E = ∂(udm) = ∂udm, which leads to
∂udm = ∂Q + ∂W . The volume of our shell is dV , so the change in its
volume is ∂dV . ∂W = −P∂dV = −P∂(1/ρ)dm. The reason this form is
more convenient is that in the end we’re going to do everything per unit
mass(Lagrangian form), so it is useful to have a dm instead of a dV .

The heat in a star can enter or leave the shell in two ways. They are:
1) In nuclear reaction taking place in stars it is released at the rate of q per
unit mass. Thus the amount of heat in ∂t is ∂Qnuc = qdm∂t
2) The second way heat can enter or leave the shell is by moving down to
the shell below or up to the shell above. The heat transfer can happen in
three ways - radiative,convective,mechanical all of which people have heard
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of earlier. But later we will discuss them in term of stars.
Let F(m) be the flux entering from beneath the shell and F(m+dm) be the
flux leaving the top of shell, therefore giving us:

∂Q = [qdm+ F (m)− F (m+ dm)]∂t (20)

which leads to

∂Q = [qdm+ F (m)− F (m)− ∂F

∂m
dm)]∂t (21)

Giving [q − (∂F/∂m)]dm∂t. Putting in the equation earlier we get

du

dt
+ P

d

dt
(
1

ρ
) = q − ∂F

∂m
(22)

This equation described conservation of energy for stellar material.

5.2 Energy Equation

Consider the simplest case of a star in equilibrium, so that each shell’s vol-
ume and specific internal energy are constant in time. Therefore, yielding
q = ∂F/∂m. Integrating over all the mass, we get F(M) - F(0). We call this
quantity the nuclear luminosity Lnuc. It is so because it has units of energy
per time; i.e., it is the total rate at which nuclear reactions in the star release
energy. F(0) is zero as there is no flux entering at the point where m = 0.
The F(M) is the energy per unit time leaving the stellar surface making the
Lnuc = L or the total luminous energy.

We can use the equation for stars which are not exactly in equilibrium also.
They are referred as time variable stars and time derivatives are not zero.
Integrating them over mass:∫ M

0

du

dt
dm+

∫ M

0

P
d

dt
(
1

ρ
)dm =

∫ M

0

du

dt
qdm− F (M) + F (0) (23)

As m is not dependant on t we can interchange the integral and the time
derivative. This gives us:∫ M

0

du

dt
dm =

d

dt

∫ M

0

udm =
dU

dt
(24)

∫ M

0

P
d

dt
(
1

ρ
)dm =

∫ M

0

P
d

dm
(
4πr2dr

dt
)dm (25)
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Integrating by - parts:

(P
4πR2dr

dt
)M0 −

∫ M

0

4πr2dr

dt

dP

dm
dm (26)

We know that the first term will yield 0 as at m = 0 dr/dt = 0 and at m = M
P = 0 approx. For the second term we can use an already derived equation:

r̈ = −Gm
r2
− 1

ρ

dP

dr
(27)

Rearranging in terms of dP/dr and converting to lagrangian form dP/dm
using the relation: dP/dm = dP/dr × (1/4πr2ρ) and converting the whole
equation to lagrangian form we get:

dP

dm
= − Gm

4πr4
− r̈

4πr2
(28)

Now putting this in the integral in place of dP/dm we get∫ M

0

Gmṙ

r2
dm+

∫ M

0

r̈ṙdm

Gmṙ

r2
= − d

dt
(
Gm

r
) ṙr̈ =

1

2

dṙ2

dt

which yields

− d

dt

∫ M

0

Gm

r
dm+

1

2

d

dt

∫ M

0

ṙ2dm = Ω̇ + Ṫ

As mass is not dependant on time we can change the derivative.
As U̇ + Ω̇ + Ṫ = Lnuc − L
If we consider a star that is expanding or contracting extremely slowly, so
that its very close to hydrostatic balance. In this case we can make two
simplifications:
1) Ṫ becomes neglible compared to internal energy and the gravitational
potential.
2) We can use the virial theorem for hydrostatic objects yielding Ω̇/2 =
Lnuc− L
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5.3 Nuclear Reactions

5.3.1 Chemical Evolution Equation

We have come to the point were we will discuss about what nuclear reactions
take place. Stars are not composed entirely of hydrogen and helium. There
is a small abundance of other heavy metals. Therefore, we will take the
derivations forward by declaring the mass fraction of element i

Xi =
ρi
ρ

We often want to count the number of atoms, instead of measuring the mass.
Atomic mass number for species i = Ai meaning each species has a mass of
AimH . The number density of the element is ni = ρi/AimH making mass
fraction:

Xi =
niAimi

ρ

Some nuclear reactions also involve electrons and positrons. This have Z =
1 or Z = -1 and A = 0. If we have a reaction in the form:

I(Ai, Zi) + J(Aj, Zj) ⇀↽ K(Ak, Zk) + L(Al, Zl) (29)

For starters, we will acknowledge that the rate of reactions will be propor-
tional to the rate at which the participating elements will encounter. The
reaction rate per unit volume must be proportional to ninj, where ni and
nj are the number density of the species i and j involved in the reaction.
The constant of proportionality, the reaction rate Rijk where i and j element
species will encounter to produce k. If the species are found to be same then
the rate of reaction will not be proportional to n2

i . Rather it will be propor-
tional to ni(ni−1)/2. This will be so to eliminate the repeated combinations.
Therefore, the rate being approx to n2

iRijk/2.
In a reaction suppose we have number density ni of species i which encoun-
ters species j leading to species k. As the i species is destroyed, the rate is
defined as:

dni
dt

= −ninjRijk

There are multiple possible reactions with many possible partners, and we
have to sum over all the reactions that destroy members of species i, therefore:

dni
dt

= −
∑
j,k

ninjRijk
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But there can also be creation of species i. If a reaction happens b/w species
l and k we will have a rate of reaction:

dni
dt

= nlnkRlki

This can be alternatively written as

dni
dt

=
nlnk

1 + δlk
Rlki

where,δlk is 0 if species k and l are different and 1 if same. Summing this

dni
dt

=
∑
l,k

nlnk
1 + δlk

Rlki

Combining the rate of destruction and creation of species i we get rate:

dni
dt

=
∑
l,k

nlnk
1 + δlk

Rlki −
∑
j,k

ninjRijk (30)

The number density can be written in terms of mass fraction to obtain the
equation in such a form.

5.3.2 Radiation Pressure

Let us take a look at radiation pressure.

Electromagnetic radiation exerts a minuscule pressure on everything, known
as radiation pressure. In everyday situation the pressure is negligible, but
in star it can become important given the vast quantities of photons emit-
ted. Inside a star blackbody conditions exist making the radiation pressure
proportional to the fourth power of temperature. As the temperatures rises
internally the radiation’s pressure increase thereby dominating other ones.
In the most massive stars, the mass of the star is supported against gravity
primarily by radiation pressure, a situation which ultimately sets the upper
limit for how massive a star can become.

Pr =
4σT 4

3c
(31)

where, c = speed of the photons(contribution towards pressure) and σ is
Stefan-Boltzman constant
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6 Timescales

Stellar evolution is described by three time dependant equations, in which
each deals with a different type of change and accordingly the timescale on
which they change.

τ =
φ

φ̇
(32)

Here, φ is a parameter which differs accordingly to the different types of
timescale.

6.1 Dynamical Timescale

This describes the dynamical or structural change in the star. Therefore,
the parameter we will be choosing is that of R, as that is the characteristic
dimension of a spherically symmetric star. φ̇ is the vesc (derivative of R in a
gravitational field).

τdyn =
R

vesc
=

R√
2GM/R

=

√
R3

2GM
(33)

Using average density ρ,

τdyn =

√
R3

2GM
≈ 1√

Gρ
(34)

Using solar scale,

τdyn ≈ 1000

√
R3

Rsun

×
√
Msun

M
s (35)

6.2 Thermal Timescale

The thermal timescale comes into play when thermal processes affect the
internal energy of the star. Therefore the parameter in this case φ = U .
Therefore, the derivative of this will be rate at which energy is radiated by
the star which is φ̇ = L

τth =
U

L
≈ GM2

LR
(36)

Using solar scale,

τnuc ≈ 1015 M
2

M2
sun

× Lsun
L
× Rsun

R
s (37)
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6.3 Nuclear Timescale

The third equation deals with change in nuclear composition of the star.
Now, nuclear composition goes through a lot of different processes which we
will discuss later. The change in quantity by nuclear processes is a small
fraction of the rest mass given by Einstein. Therefore, as E = mc2 the
parameter will be φ = εmc2. Again rate of change is nuclear luminosity(
total rate at which nuclear reactions in the star release energy) Lnuc = L

τnuc ≈
εmc2

Lnuc
≈ εmc2

L
(38)

Using solar scale,

τnuc ≈ ε× 4.5× 1020 M

Msun

× Lsun
L

s (39)

Therefore,

τdyn � τth � τnuc (40)

7 Equations of stellar structure

Evolution of a star is a quasi - static process therefore the equilibrium is
maintained (composition changes slowly). Let us discuss the equations of
stellar equations both in Euler and Lagrangian form.

dP

dr
= −ρGM

r2
dP

dm
= −GM

4πr4
(41)

dm

dr
= 4πr4

dr

dm
=

1

4πr4
(42)

dT

dr
=
−3

4ac

kρ

T 3

F

4πr2
dT

dr
=
−3

4ac

k

T 3

F

(4πr2)2
(43)

dF

dr
= 4πr2ρq

dF

dm
= q (44)

First represents hydrostatic equilibrium equation.
Second represents continuity equation.
Third represents radiative transfer equation.
Fourth represents thermal equilibrium equation.
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7.1 Polytropes

It turns out that many of the observed properties of stars, except their life-
times and radii, reflect chiefly the need to be in hydrostatic and thermal
equilibrium, and not the energy source.
Polytropes is a concept used by physicists to understand the stellar struc-
ture of the stars. Polytropes are self-gravitating gaseous spheres in which the
pressure depends on density in the form of P = Kρ(n+1)/n. The n is known as
polytropic index. Basically it is a solution of Lane - Emden equation which
we will derive right now.

Let us begin with HSE equation
dP/dr = −ρGM/r2

dP/dr × r2/ρ = −GM

Differentiating agin wrt r

d

dr
[
r2

ρ

dP

dr
] = −GdM

dr
= −4πGr2ρ (45)

1

r2
d

dr
[
r2

ρ

dP

dr
] = −4πGρ (46)

The Lane - Emden equation is a dimensionless form of Poisson’s equation
for the gravitational potential of a Newtonian self-gravitating, spherically
symmetric, polytropic fluid(in this case of a star). So let us make this di-
mensionless. Central density is ρc and then ρ = ρcθ

n.

P = k(ρcθ
n)λ

1

r2
d

dr
[
r2

ρ

dP

dr
] = −4πGρ (47)

1

r2
d

dr
[
r2

ρc(θ)n
dk(ρc)

λ(θ)nλ

dr
] = −4πGρc(θ)

n (48)

Taking the constants out and replacing the λ with (n+1)/n we get

[
Pc(n+ 1)

4πGρc2
]

1

r2
d

dr
[
r2dθ

dr
] = −θn (49)
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As the quantity in brackets has a dimension of length2 , therefore we assign
a value α2 to the quantity in the brackets. We will also assign r = αξ which
leads to

1

ξ2
d

dξ
[ξ2
dΘ

dξ
] = −Θn (50)

And tada we got the Lane - Emden equation. The two central boundary
conditions are now Θ = 1 and dΘ/dξ = 0 at ξ = 0

Putting n = 0 in the equation (43) we get (d/dξ)(ξ2dΘ/dξ) = −ξ2
Integrating wrt ξ we get

Θ = −ξ
2

6
− C

ξ
+D (51)

Applying the boundary conditions that Θ = 1 and dΘ/dξ = 0 at ξ = 0, we
immediately see that we must choose C = 0 and D = 1; so the solution is
therefore Θ = 1− (ξ2/6)
It is obvious the function is monotonically decreasing when ξ > 0 and be-
comes 0 at ξ = ξ1 =

√
6

The radius at which ξ reaches zero is r = R, therefore R = αξ

Computing the mass of the star we get,

M =

∫ R

0

4πr2ρdr = 4πρc

∫ ξ1

0

ξ2Θndr = −4πρc

∫ ξ1

0

d

dξ
[ξ2
dΘ

dξ
] (52)

We get

M = −4πα3ρc × ξ21 [
dΘ

dξ
] (53)

We also use this to calculate how much dense is the star centrally to mean
density. Dn = ρc/ρ = ρc4πR

3/3M Use the already mentioned derivations we
get

Dn = −3dΘ

ξ1dξ

−1
atξ = ξ1 (54)

A second useful relationship is between mass and radius. We start by ex-
pressing the central density c in terms of the other constants and length scale
α.

ρc =
(n+ 1)K

4πGα2

n/n−1

(55)
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Next we substitute this into the equation for the mass:

M = −4πα3 × ξ21
dΘ

dξ
× (n+ 1)K

4πG2

n/n−1

(56)

This is at ξ = ξ1 and doing substitution we relate mass and radius.
M ≈ R(n−3)/(n−1)

A third useful expression is for the central pressure. From the equation
of state : Pc = Kρ

n+1/n
c

Pc =
(4πG)1/n

n+ 1
× GM

−ξ2(dΘ/dξ)

(n−1)/n
× R

ξ1

3−n
× ρ(n+1)/n

c (57)

Pc = (4π)1/3BnGM
2/3ρ4/3c (58)

8 Physics of stellar fluids

In this section we will discuss deeply about different forms of pressure and
how they affect the total pressure and the physics related to each pressure.
The physics of stellar interior deals with :

Properties of gaseous systems
Radiation and it’s effects
Interaction b/w gas and radiation

The equation of state is a relation b/w the exerted pressure, present temper-
ature and density. For understanding the stars, let us assume that the gas
is ideal as we have done before and here we will prove how the assumption
is correct. For a gas to be ideal the particles have to be non-interactive and
obeying the gas laws exactly. At the prevailing temperatures it is expected
that coulomb interactions will take place. But here we will see that the ki-
netic energy of the particles is large when compared with coulombic forces.

d = (AmH/ρ)1/3 = (4πAmH/3M)1/3R

Using the d(mean distance) in equation Ec = ((Ze)(e)/4πεd) we get
Ec/kBT << 1 and substituting T with T = (α/3)×(µ/R)×(GM/R) (which
we took care of while discussing virial theorem) and replace µ with A
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Therefore,

Ec

kBT
=

1

4πε

Z2e2

G(AmH)4/3M2/3
≈ 0.011

Z2

A4/3

M

Msun

−2/3
(59)

An important point ,i.e., for Z = 1, A = 1 and for Z higher A = 2Z the ratio
is well below 1 but the problem arises when M ≈Msun × 10−3 or lower the
ratio is approx 1. Now the stars may not be of this mass but planets are like
Jupiter. We can conclude from here that stars are composed of gases that
show ideal features and as the planet’s mass reduces the closer it is to being
of a solid structure.

8.1 Kinetic Theory Model of Pressure

The pressure is the force exerted by a gas on the surface. Here we will use
for pressure - momentum per unit time per unit area. The reason there is
a momentum transfer is that particles in the gas are moving around at ran-
dom, and that some of them will strike the walls of the vessel, bounce off,
and transfer momentum. We can compute the pressure by computing this
momentum transfer.

When a particle with an angle θ, momentum p encounters and bounces
elastically off an immobile surface. The momentum transferred is 2pcosθ.
Talking in collective sense, a beam of particles will encounter the surface
with momentum p, number density n and velocity ν. It will give a surface
strike rate at area dA - nνcosθdA. Total rate at which the beam transfers
the momentum is :

d2psurf
dtdA

= 2nνpcos2θ (60)

Now, as the beam will travel in all direction we will take a strip in θ and
θ + dθ relative to the normal, where the number density will be denoted as
d(n)θ/dθ. The solid angle of the strip taken will be 2πsinθdθ and 4π for the
total.
d(n)θ/dθ = (1/2)nsinθ
Therefore the momentum transferred =

d2psurf
dtdA

= npν

∫ π/2

0

cos2θsinθdθ =
nνp

3
(61)
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We let dn(p)/dp be the number of particles with momenta between p and
p+ dp. The total pressure will be:

P =

∫ ∞
0

1

3

d(n)p

dp
pνdp (62)

8.2 Types of Pressure

1) Ideal gas law
The star is composed of gases which are ionized. The ideal gas law therefore
helps in determining the pressure. Let a gas has mass of all particles m
and have a Maxwell-Boltzman velocity distribution. Here, we know that the
probability of the gas having energy E is proportional to e−E/kBT . Taking the
route of three dimensionality for the momentum calculation of stellar gases.

E =
p2

2m
=
p2x + p2y + p2z

2m

The probability for the momentum to lie b/w p and p+dp in a volume of
4πp2dp, giving us

dn(p)

dp
∝ 4πp2e−p

2/2mkBT

Integrating it we get:

n = 4πk

∫ infty

0

p2e−p
2/2mkBT

dp

Keeping q = p/
√

2mkBT we integrate to get

n = k(2πmkBT )3/2

In this integration one can choose the way of multivariable calculus. k here
is constant of proportionality. Now we can use k in d(n)p/dp giving us

d(n)p

dp
=

4πn

(2πkBmT )3/2
p2e−p

2/2mkBT (63)

This can be used to calculate the pressure:

P =

∫ infty

0

1

3

4πn

(2πkBmT )3/2
p2e−p

2/2mkBTp
p

m
dp
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Taking the constants out we will observe:

P ∝
∫ ∞
0

q4e−q
2

dq

q represents the same quantity earlier considered and same integration method
will be used. Therefore, giving us P = nkBT

2) Multiple species in gases

Stellar gases are composed of more than one species. Each species follows
the Boltzmann distribution, and the sum of the momentum transferred to a
surface is simply the sum of the momenta transferred by the particles of each
species, each of which is given by nkBT . Therefore, for n species the total
pressure is

P = (
N∑
i=1

ni)kBT

Using mass fraction of i species in ni we get:

P =
N∑
i=1

Xi

Ai
ρRT =

kB/mH = R

N∑
i=1

Xi

Ai
=

1

µ

µ will depend upon the composition of the gas and the state of ionization in
the star.
neutral µ = 1 fully ionized µ = 0.5
For stars we will have to consider both neutrons and electrons for the density
calculation.

Hydrogen−Neutron =
Xρ

mH

electron =
Xρ

mH

(64)

Helium−Neutron =
Y ρ

4mH

electron =
2Y ρ

4mH

(65)
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Others−Neutron =
Zρ

AmH

electron =
A

2
.
Zρ

AmH

(66)

Where,
X hydrogen - mass mH , one electron
Y helium - mass 4mH , two electrons
Z the rest, ‘metals’, average mass AmH , approximately (A / 2) electrons per
nucleus
Note, that we refer to metals as elements other than H and He in astronomy
usually - so even C would be considered as one. Assuming A>>1.

First we will calculate pressure due to ions

1

µI
=
X

1
+
Y

4
+

Z

Ametals

For pressure due to electrons we will proceed further. there is one free electron
per proton. If ni is the number density of ions of species i, then the number
density of electrons :

ne =
∑
1

Zini =
∑
1

Zi
Xi

Ai

where

1

µe
=

∑
1

Zi
Xi

Ai

X +
Y

2
+
Z

Z
A =

1

µe

P = PI + Pe
1

µ
=

1

µI
+

1

µe

3) Relativistic gases

The kinetic theory here is needed to generalize the concept of pressure to
gasses that are not ideal, classical gasses. The particles in such has a veloc-
ity nearly equally to c. Here energy will be defined as E = pc. For electrons,
the transition between the two regimes occurs when (3/2)kBT be- comes
comparable to (1/2)mec2, the electron rest energy. Therefore relativistic
conditions occur at temperatures of:

3kBT

2
=
mec

2

2
Trel ≈

mec
2

3kB
= 2× 109
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The momentum distribution is described by the equation:

d(n)p

dp
= 4πkp2e−E/kBT = 4πkp2e−pc/kBT

As done earlier we will calculate k using integration

n = 4πk

∫ ∞
0

p2e−pc/kBTdp

The integration is simple and will yield

n = 8πk
(kBT )3

c3

which gives

k =
c3

(kBT )3
n

8π

9 Internal Energy

The distribution of particle momenta, dn(p)/dp, which was calculated from
the Boltzmann distribution is also important for internal energy(particles
being non-interactive, the K.E. of moving particles is the internal energy).

Density of energy within that volume of space:

e =

∫ ∞
0

dn(p)

dp
ε(p)dp

ε(p) being the energy of a particle with momentum p. Now dividing energy
per unit mass is e/ρ.

u =
1

ρ

∫ ∞
0

dn(p)

dp
ε(p)dp

ε(p) = mc2(

√
1 +

p2

(mc)2
− 1)

In these cases we use two cases :
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1) Non-relativistic(p¡¡ mc) and ε(p) = p2/2(mc)2 (Taylor expansion used)
2) Ultra-relativistic(p¿¿mc) and ε(p) = pc

We will have four pairs of condition pertaining to - relativistic, non-relativistic,
degenerate, non-degenerate

Relativistic, non-degenerate limits

u =
1

ρ

∫ ∞
0

(
c

kBT
)3
n

2
p2e−pc/kBT (pc)dp

=
c4

2mkBT

∫ ∞
0

p3e−pc/kBTdp =
3

mkBT

u =
3P

ρ
(67)

Non-relativistic, non-degenerate limits

u =
1

ρ

∫ ∞
0

4πn

(2πmkBT )3/2
p2e−p

2/2πmkBT
p2

2m
dp

=
2π

m2(2πmkBT )3/2

∫ ∞
0

p4e−p
2/2πmkBTdp

=
4kBT

mπ1/2

∫ ∞
0

q4e−q
2

dq

u =
3kBT

2m
=

3

2

P

ρ
(68)

Non-relativistic, degenerate limits

u =
1

ρ

∫ ρo

0

8πp2

h3
(
p2

2m
)dp

=
4π

5mπh3
(ρ5o) =

(32/3)

(π2/3)

3h2n5/3

40ρm
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u =
3

2

P

ρ
(69)

Relativistic, degenerate limits

u =
1

ρ

∫ ρo

0

8πp2(pc)

h3
dp

=
31/3

π1/3

3

8

hcn4/3

ρ

u = 3
P

ρ
(70)

9.1 Adiabatic Process

Adiabatic processes take place in a star. Any process which takes place on
a timescale shorter than Kelvin-Helmholtz scale is thought of as adiabtic.
Let us discuss the reason. Any gas which cannot exchange heat with the
environment or extract it from internal sources(in case of stars it is nuclear
burning). But still the energy exchange can take place through radiation.
The reason we do not count it in is due to the long time it takes as opposed
to dynamical time(change in composition). Therefore, we consider gas in the
star to be adiabatic. Onto the thermodynamic eq:

du

dt
+ P

d

dt
(
1

ρ
) = q − ∂F

∂m

As heat exchange becomes zero

du

dt
+ P

d

dt
(
1

ρ
) = 0

For solving the differential equation consider u = φP/ρ, where φ is a constant
that depends on the type of gas. Substituting and solving:

d

dt
(
φP

ρ
) + P

d

dt
(
1

ρ
) = 0

d

dt
(
φP

ρ
) + P

d

dt
(
1

ρ
) = 0
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(
φ

ρ
)
dP

dt
+ φP

d

dt
(
1

ρ
) + P

d

dt
(
1

ρ
) = 0

Grouping terms

(
φ

ρ
)
dP

dt
+ P (φ+ 1)

d

dt
(
1

ρ
) = 0

(
φ

ρ
)
dP

dt
= −P (φ+ 1)

d

dt
(
1

ρ
)

(
φ

ρ
)
dP

dt
=
P (φ+ 1)

ρ2
dρ

dt

dP

P
=

(φ+ 1)

φ

dρ

ρ

lnP = γa ln ρ+ lnKa (71)

P = ργaKa (72)

γa = (φ+ 1)/φ and Ka is a constant
The constant of integration Ka is called the adiabatic constant, and it is
determined by the entropy of the gas.

Our focus in this section has been on adiabatic process and the index. The
index plays an important role in stars. The index gives an idea of how much
the gas is resistant to compression and plays an important role in the struc-
ture of the stars. All stars have γa = 5/3(close) in a non-relativistic star
but as it approaches γa = 4/3 the star becomes relativistic and resistance to
compression drops.

Radiative effects cause interstellar gas clouds to act as if they had γa = 1
making the gas weakly resistant to compression therefore leading to the stage
of protostars(early stage of star formation).
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9.2 Adiabatic index for partially ionized gas

The stellar gases are not so simple. They are complex but the index can be
generalized.

This case is tricky because the number of free gas particles itself becomes
a function of temperature, and because the potential energy associated with
ionization and recombination becomes an extra energy source or sink for the
gas. Consider a gas of pure hydrogen within which the number density of
neutral atoms is n0 and the number densities of free protons and electrons
are np = ne. The number density of all atoms regardless of their ionization
state is n = ne + no. The ionization fraction is:

x =
ne
n

The pressure on gas is dependant on the free particles:

P = nekBT + npkBT + nokBT = (no + np)(1 + x)RT (73)

Thus the pressure at fixed temperature is higher if the gas is more ionized,
because there are more free particles. Let us see Saha equation. According
to it:

n+ ne
no

=
g

h3
(2πmkBT )3/2e−XkT (74)

Here X is the ionization potential

x2

1− x2
=

g

h3
(2πmkBT )3/2e−XkT

Therefore,

u =
3

2

P

ρ
+
x

X
mH (75)

Differentiating the equation and using in the first thermodynamic equation

3

2
(
1

ρ
)dP +

3

2
Pd

1

ρ
+

X

mH

∂x

∂ρ
d(ρ) +

X

mH

∂x

∂P
d(P ) + Pd(

1

ρ
) = 0

Rearranging the terms we will get:

(
3

2
+
X

kT

P

1 + x

∂x

∂P
)
dP

P
= (

5

2
− X

kT

ρ

1 + x

∂x

∂ρ
)
dρ

ρ
(76)

Integrating the terms we will get:

γa(x) =
5 + (5

2
+ X

kT
)2x(1− x)

3 + (3
2

+ X
kT

)2x(1− x)
(77)

We have come far from where we started. Just a little topic and then we will
be off to the real magic.
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10 Nuclear Reactions in Stars

The nuclear process happening in the stars is the actual energy generator.
Whenever we talk about nuclear processes we have to talk about the binding
energy. It is known that the mass is not conserved in nuclear reactions - the
difference depending on the binding energy of the interacting elements. Let
us take a nuclear reaction:

I(Ai, Zi) + J(Aj, Zj) ⇀↽ K(Ak, Zk) + L(Al, Zl)

Now, the energy Q released will be

Q = (Mi +Mj −Mk −Ml)c
2

Taking it in a different form:
Q = ((Mi − AimH) + (Mj − AjmH) − (Mk − AkmH) − (Ml − AlmH))c2 +
(AimH + AjmH − AkmH − AlmH)c2

Due to law of conservation of baryons in a reaction(baryons here deal with
protons and neutrons) the 2nd part of right hand equation will become zero.
Therefore yielding, ∆M(I) = (Mi −AimH)c2 , the change is known as mass
excess(positive or negative).
Refreshing our memories, rate per unit volume at which reaction takes place

ρ2

m2
H

1

1 + σij

Xi

Ai

Xj

Aj
Rijk

and the total nuclear energy release rate per unit volume is

ρ2

m2
H

∑
ijk

1

1 + σij

Xi

Ai

Xj

Aj
RijkQijk

10.1 Rate of reaction

For nuclear reactions to take place we need the microphysical details to tick
some basic boxes. We know about the coulomb barrier, will read about
quantum tunneling and discuss about a few more missing blanks.

10.1.1 Coulomb Barrier

The stars are a powerhouse undergoing nuclear fusion. When we talk about
fusion reactions we cannot ignore two main points that the reactions are gov-
erned by:
1) Long-range repulsive electrostatic Coulomb force
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2) Short-range attractive strong nuclear force

For the fusion to take place the interacting nuclei should overcome the
coulomb barrier(due to positive charges) that arises due to repulsion. Let
us take an example of nucleus with charge Zi and Zj. Now,the potential
energy will be:

U =
ZiZje

2

r

11 Forms of nuclear reaction
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